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CONDITIONING OF THE STABLE, DISCRETE-TIME LYAPUNOV OPERATOR* 
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Abstract. The Schatten p-norm condition of the discrete-time Lyapunov operator LA defined on matrices 
P E Rn X n  by La P f P - ApAT is studied for stable inatrices A E Rn n. Bounds are obtained for the norm 
of LA and its inverse that depend on the spectrum, singular values and radius of stability of A. Since the solution 
P of the the discrete-time algebraic Lyapunov equation (DALE) LAP = Q can be ill-conditioned only when either 
LA or Q is ill-conditioned, these bounds are useful in determining whether P admits a low-rank approximation, 
which is important in the numerical solution of the DALE for large n. 

Key words. Lyapunov matrix equation, condition estimates, large-kale systems, radius of stability. 

AMS subject classifications. 15A12,93C55,93A15,47B65 

1. Introduction. Properties of the solution P of the discrete algebraic Lyapunov equa- 
tion (DALE), P = ApAT +  are closely related to the stability properties of A. For 
instance, the DALE has a unique solution P = pT > 0 for any Q =.QT > 0 if A is stable 
[ l l ] ,  a fact also true in infinite-dimensional Hilbert spaces 1181. In the setting treated here 
with A, Q,  P E Rnxn, A is stable if its eigenvalues &(A), i = 1, .  . . , n, lie inside the unit 
circle; the eigenvalues are ordered so that ] X1 (A) I > I X2 (A) I > - - > I An (A) 1. Here A is 
always assumed to be stable. 

In applications where the dimension n is very large, direct solution of the DALE or 
even storage of P is impractical or impossible. For instance, in numerical weather prediction 
applications A is the matrix that evolves atmospheric state perturbations. The DALE and its 
continuous-time analogs can be solved directly for simplified atmospheric models [6, 231, 
but in realistic models n is about lo6 - lo7 and even the storage of P is impossible. Krylov 
subspace [5] and Monte Carlo [9] methods have been used to find low-rank approximations 
of the right-hand side of the DALE and of the solution of the DALE [lo]. 

The solution P of the DALE can be well approximated by a rank-deficient matrix if P 
has some small singular values. Therefore, it is useful to identify properties of A or Q that 
lead to P being ill-conditioned. If A is normal then 

the conditioning of P is controlled by that of Q and by the spectrum of A. In the general case, 
the conditioning of Q and of the discrete-time Lyapunov operator LA defined by L A P  E 
P - ApAT determine when P may be ill-conditioned. 

THEOREM 1.1. Let A be a stable matrix and suppose that L A P  = Q for Q = QT > 0. 
Then 
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where 1 1  . ] I p  is the Schattetz p-nornt (see Eq. 2.2). 
Theorem 1.1 (see proof in Appendix) follows from L j '  and its adjoint being positive 

operators. Therefore the same connection between rank-deficient approximate solutions and 
operator conditioning exists for matrix equations such as the continpous algebraic Lyapunov 
equation. We note that Theorem 1.1 also holds for 1 5 p < oo if either A is singular or 
a: (A) 2 2; a1 (A) is the largest singular value of A. 

Here we characterize the Schatten p-norm condition of LA. The main results are the 
following. Theorem 3.1 bounds llLAllp in terms of the singular values of A. A lower bound 
for IILilllp depending on X1(A) is presented in Theorem 4.1, generalizing results of [7]. 
Theorem 4.2 gives lower bounds for llLillll and 11Li1119, in terms of the singular values of 
A. Theorem 4.6 gives an upper bound for ~~Li'll, depending on the radius of stability of 
A and generalizes results in [20]. Three examples illustrating the results are included. The 
issue of whether LA and LA' achieve their norms on symmetric, positive definite matrices is 
addressed in the concluding remarks. 

2. Preliminaries. We investigate the condition number K(LA) = llLAll IILl' 11, where 
11 - 1 1  is a norm on Rn2 xn2 induced by a matrix norm on Rnxn . Specifically, for M E Rn2 xn2  

we consider norms defined by 

where the Schatten matrix pnorm for S E RnXn is defined by 

ai (S) are the singular values of S with ordering a1 (S) > az (S) 2 - - 2 an (S) 2 0. On 
j p x n  , 11 - [ I 2  is the Frobenius norm and 11 - 11, = (TI(.). If S = ST 2 0 then llSlll = t r  S. 
The following lemma about the Schatten p-norms follows from their being unitarily invariant 
[I, p. 941. 

LEMMA 2.1. For any three matrices X ,  Y and Z E Rn n,  

The p = 2 Schatten norm on RnXn is equivalently defined as llSllz = (S7 S) ,  where 
' (., .) is the inner product on RnXn defined by (S1, Sz)  = t r  This norm corresponds 

to the usual Euclidean norm on Rn2 since IISIIz is equal to the sum of the squares of the 
entries of S. As a consequence nz (LA) = a1 (LA)/ana (LA), where a1 (LA) and nnz (LA) 
are respectively the largest and smallest singular values of LA. The adjoint of LA is given by 
LLS = LATS = S - ATSA. 

We now state some lemmas about mappings M E Rn2 xn2 and about the spectra of LA 
and A. 

LEMMA 2.2 ((15) of [21). IIM 11, 5 IIMII:'~(IM I I ~ ~ ' ~ ,  1 < p 5 oo. 
LEMMA 2.3. llMlll = IliU*llm. 
LEMMA 2.4 (See proof of Theorem 1,  [2]). If MS > 0 for all S E RnXn such that 

S > 0, then IliUllm = IIMIllm. 
LEMMA 2.5 ([13, 141). Tlze n%igetzvalltesof LA are 1 - Xi(.4)Xj(d), 1 5 i , j  5 n. 
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3. The norm of the Lyapunov operator. If A is normal, then CA4 is normal, and its 
conditioning in the p = 2 Schatten norm depends only on its eigenvalues. Therefore when A 
is normal, 

For general A, the following theorem bounds II.CAIIP in terms of the singular values of A. 
THEOREM 3.1. 

Proof. Note that CAvjvT = vivT - a ; u j u ~ ,  where u j  and v j  are respectively the j-th 
left and right singular vectors of A such that Avj = a ju j .  The lower bound follows from 
llujujTllp = llvjvjTllp = 1 and 

The upper bound follows from 

If A is normal, aj (A) can be replaced by I X j  (A)] in Theorem 3.1, and l l L ~ l l ~  5 1 + 
IX1 (A)I2. If A is normal and (-A1 (A)) is an eigenvalue of A, then 1 + IX1 (A)I2 is an 
eigenvalueof LA and llL~11p = 1 + IX1(A)12. 

Theorem 3.1 shows that IICAllp is large and contributes to ill-conditioning if and only 
if a1 (A) is large, a situation that occurs in various applications [3,22]. If o1 (A) >> 1 and 
IX1(A)I < 1, A is highly n o n n o ~ a l  [8, p. 314 ] and as Corollary 4.8 will show, close to an 
unstable matrix. 

4. The norm of the inverse Lyapunov operator. We first show that a sufficient condi- 
tion for IICilllp to be large is that X1 (A) be near the unit circle. The condition is necessary 
when A is normal. 

THEOREM 4.1. Let A be a stable matrix. Then 

with equality holding ifA is normal. 
Proof. To obtain the lower bound, let 2.1 be the leading eigenvector of A, Azl = X1 (A)zl, 

and note that C A z l ~ r  = (1- IX1(A)12)z1zr where (.)H denotes conjugate transpose. Either 
~ e z ~ z r  # 0 or 1mzlz? # 0 is an eigenvector of LA, and it follows that IILilllp 2 
(1 - IX1 (A)I2)-l. Finally, if A is normal, then 
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and l l , C ~ ' l l ~  = II,CilII1 = (1 - IX1(A)12)-'. Using Lemma 2.2 gives Il,CA1IIp < (1 - 
I X I ( A ) ~ ~ ) - ~  when 4 is normal, and therefore I ~ L A ' I I ,  = (1 - IX1(.4)]2)-'. Cl 

When A is nonnormal, l l ,Cjl l lp can be large without X1(A) being near the unit circle. 
For instance, if a1 (A) is large or more generally if IIAk/lw converges to zero slowly as a 
function of k, then I I C A '  [ I p  is large. We show this fact first for p = 1, ca. 

THEOREM 4.2. Let A be a stable matrix. Fbr all m > 1, 

In particular, 

Proof: The operator .Cil applied to S E RnXn can be expressed as [IS] 

Applying Lemma 2.4 gives II,Cil 11, = II,CilIllm, with the inequality in (4.4) being a con- 
sequence of 

and 

where we have used the facts that for matrices W, X, Y E Rnxn with X, Y being symmetric 
positive semi-definite, Xi(X + Y) > Xi(X) + Xn(Y) and Xi(WXWT) > ai(W)Xi(X) 
[17]. Likewise thep = 1 results follow from ll,Ci'lll = 1l.L~f 111,. Cl 

Lower bounds for 1 < p < ca follow trivially, e.g., 

but give little information when n is large. A lower bound for 1 < p < ca depending on 
crl (A) and independent of n is given in Corollary 4.9. 

We now relate ll,Cil / I p  to the distance from A to the set of unstable matrices as measured 
by its radius of stability [15]. 

DEFINITION 4.3. For any stable matri.~ A E RnXn defne the radius of stability r (A)  by 

r(A) z min I I ( ~ ~ ~ I - A ) - ~ I I & ~  = mi? I I R ( ~ ~ ~ , A ) I I & , ~ ,  
O < f 3 < 2 ~  O < B < 2 a  
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where the resolvent of A is R(X, A) = (XI - A)-'. 
If A is normal and stable, then r(A) = 1 - IX1(A)I. However, if A is nonnormal and 

if its eigenvalues are sensitive to perturbations, then r(A) << 1 - IX1 (A)I. The sensitivity of 
the eigenvalues of A is most completely described by its pseudospeqtrrtm [21]. The radius of 
stability r(A) is the largest value of E such that the E-pseudospectrum of A lies inside the unit 
circle; r(A) being small indicates that the E-pseudospectrum of A is close to the unit circle 
for small E. The following theorem shows that when r(A) is small, IILzl 11, must be large. 

THEOREM 4.4 (Proven for p = CCJ in [7]). Let A be a stable matrix. Then 

1 
~ ~ L ~ l ~ ~ p  2r(A) + T2 (A) I < p < m .  

Proof. There exists a matrix E E WXn with IX1 (A + E)I = 1 and llEllw = r(A). 
Therefore there exists a vector x with x H x  = 1 such that (A + E ) x  = eiex for some 
0 5 0 5 27r. Using IlxxHIIp = 1 add Lemma 2.1 gives 

and we have 

A consequence of Theorem4.4 is the following lower bound for r(A) in terms of IILzl I I p .  
COROLLARY 4.5. Let A be a stable matrix. Then 

Bounds for r(A) are useful in robust stability [12] and in the study of perturbations of 
the discrete algebraic Riccati equation (DARE) [19]. In [19, Lemma 2.21 the bound 

l l ~ i l l l & l  

r(A) ' o1 (A) + JW 
was used to formulate conditions under which a perturbed DARE has a unique, symmetric, 
positive definite solution. Since the lower bound in (4.14) with p = cm is sharper than that 
in (4.15) when g1 (A) > 1, it can be used to show existence of a unique, symmetric, positive 
definite solution of the perturbed DARE for a larger class of perturbations [19, Theorem 4.11. 

We generalize to Schatten p-norms the conjecture of [7] proven in [20] for the Frobenius 
norm. 

THEOREM 4.6. Let A be a stable matrix. Then 
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Proof. LA' I can be expressed as [20, 131, 

Therefore, from Lemma 2.4, 

The inequality (4.16) for p = 1 follows from I ~ L , '  I l l  = ]!LA$ Illm and r(A) = r(AT). The 
theorem follows from Lemma 2.2. II 

As a consequence, any solution of the DALE can be used to obtain an upper bound for 
r(A). 

COROLLARY 4.7. Let A be a stable matrix and let L A P  = Q. Then 

Theorem 4.6 can be combined with any lower bound for IILilllp to obtain an upper 
bound for r(A). For instance, from Theorem 4.2 we get the following upper bound. 

COROLLARY 4.8. Let A be a stable matrix. Then 

Combining Corollary 4.8 and Theorem 4.4 gives a lower bound for lILilllp. 
COROLLARY 4.9. Let A be a stable matrix. Then 

1 + u: (A) 
l < p < m .  

5. Examples. We present three examples that illustrate how ill-conditioning of LA leads 
to low-rank approximate solutions of the DALE. 

EXAMPLE 1. Almost unit eigenvalues. Take A = XzzT where X and z are real, 0 < X < 
1 and zTz = 1. The matrix A is symmetric and LA is self-adjoint. The eigenvalues of A 
are (A, 0,. . . ,0).  The operator LA has singular values (and eigenvalues) (1,. . . ,1,1- X2). 
Therefore IILA 112 = 1 and 1 < IILA lip < 1 + X2 from Theorem 3.1. The norm of the inverse 
Lyapunov operator is 

according to Theorem 4.1. As the eigenvalue X approaches the unit circle, LA is increasingly 
poorly conditioned. The solution of the DALE for this choice of A is: 

A "natural" rank-1 approximation P of P is P = X2(1 - X2)-I (zTQz)zzT. AS the eigenval- 
ue X approaches the unit circle, if (zTQz) is nonzero, P is increasingly well-approximated 
by in the sense that IIP - Pllp/llpllp approaches zero. 
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EXAMPLE 2. Lnrge sirzgitlar values. Take A = ayzT where a > 0 and y and z are real 
unit n-vectors. The matrix A has at most one nonzero eigenvalue, namely X = a(yTz), taken 
to be less than one in absolute value. The sensitivity s of the eigenvalue X is the cosine of the 
angle between y and a, i.e., s = X / a  for A # 0, indicating that X is gensitive to perturbations 
to A when a is large [8]. 

Theorem 3.1 gives that 1 + u2 > IILA~~, 2 11 - a21, showing that I ILAI~~ is large when 
a is large. From Lemmas 2.3 and 2.4, 

and it follows from Lemma 2.2 that lILjl 11, < 1 +a2/(l - X2). A lower bound for thep = 2 
norm is 

The matrix A is near an unstable matrix when either !XI is near &ity or when a is large 
since 

Therefore r(A) < (1 - IXl)/a and a lower bound on IILi1ll, follows from Theorem 4.4. 
When either IXI is close to unity or when a is large, r(A) is small and IE,(LA) is large. 

The solution of the DALE is 

When LA is ill-conditionedand (zTQz) # 0, the rank-1 matrix p = a2(1-X2)-I (zTQz) yyT 
is a good approximation of P in the sense that IIP - Pllp/ll~llp is small. 

EXAMPLE 3. Sensitive eigenvalues. Consider the dynamics arising from the one-dimensional 
advection equation, wt + w, = 0 for 0 5 x < n, with boundary condition w(0, t) = 0. The 
matrix A that advances the n-vector w(x = 1,2,. . . , n,  t = to) to w(x = 1,2,. . . , n,  t = 
to f 1) is then x n matrix with ones on the sub-diagonal and zero elsewhere, i.e., the transpose 
of an n x n Jordan block with zero eigenvalue. Adding stochastic forcing with covariance Q 
at unit time intervals leads to the DALE, LAP = Q, where P is the steady-state covariance 
of w. 

Since al(A) = 1, Theorem 3.1 yields 1 < IlL~ll, < 2. Further, since llL~lll > 
11L~e~eTIIl = IJeleT - e2eTlll = 2, where ej is the j-th column of the identity matrix, 
IILAlll = 2. A similar argument with LA= gives l l L ~ l l ~  = 2. Calculating L j l I  and LA: I 
gives llLilllrn = IILillll = n. Therefore, using Lemma 2.2, IILi1llP < n. Also, 

A direct calculation shows that 
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for any real 8. Since J;lll(eL" - A)-'lloo 2 I l ( eLO~ - A)-lI1:), we have r"A) ) 2/(n + 1). 
Theorem 4.4 then gives a lower bound for ~J,Czlll,, 1 I p I CQ. Thus as n becomes 
large, that is, as the domain becomes large with respect to the advection length scale, LA is 
increasingly ill-conditioned. 1 

The elements Pij of the solution P of the DALE are 

n-1 min (i-1,j-1) 

Pij = eTpej  = ~ T A * Q ( A ~ ) ' ~ ~  = Qi-k,j-k. (5.9) 

Therefore if Q = QT > 0, a "natural" rank-m approximation of P is the matrix I3 defined 
by 

Pi , j ,  n - m < i , j l n  
otherwise. 

When Q is diagonal, P is also diagonal and 

In this case, each Qkk > 0  and is the best rank-m approximation of P in the sense of 
minimizing llP - pllp. We note that I3 is associated with the left-most part of the domain 
O S x I n .  

6. Concluding Remarks. Results about ll,Cilllp translate into bounds for solutions of 
the DALE. For instance, the solution P of the DALE for Q = QT 2 0  satisfies 

and the upper bound is achieved for Q = wlw:, where wl is the leading eigenvector of 
LA; I. In the p = rn norm, ,Ci l  achieves its norm on the identity. In the p = 2 norm, 
LA' does not in general achieve its norm on the identity, and the question arises whether 
it achieves its norm on any symmetric, positive semi-definite matrix. The forward operator 
LA does not in general assume its norm on a symmetric, positive semi-definite matrix. The 
following theorem states that LA' does achieve its p = 2 norm on a symmetric, positive 
semi-definite matrix. 

THEOREM 6.1. There exists a matrix S = ST 2 0 such that Il,C~'s(l2/llsll2 = 
1113,1112. . . 

Proof. Theorem 8 of [4] states that the inverse of the stable, continuous-time Lyapunov 
operator achieves its p = 2 norm on a symmetric matrix. The proof is easily adapted to 
give that , C i l  achieves its p = 2 norm on a symmetric matrix. We now show that if ,Ci l  
achieves its p = 2 norm on a symmetric matrix, it does so on a symmetric, positive semi- 
definite matrix. Suppose that 11.C~'~11~/11~112 = Il,CA1ll2 and S is symmetric with Schur 
decomposition S = U D U ~ .  Define the symmetric, positive semi-definite matrix Sf = 
UIDIuT. Then llSll2 = 11S+112 and -S+ 5 S 5 S+. The positiveness of the stable, 
discrete-time inverse Lyapunov operator mapping implies that -,Cil  S+ < ,C i l  s 5 ,Cil s f ,  
which implies that I l ,Ci1~l12 5 II,Ci1S+I12. Therefore 
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Additional information about the leading singular vectors of L i '  could be useful for 
determining low-rank approximations of P. The power method can be applied to .C,$L,' 
to calculate the leading right singular vector and singular value of c,' 171. However, this 
approach requires solving two DALEs at each iteration, which may, be impractical for large 
n. If it is practical to store P and to apply LA and LAT, a Lanczos method could be used to 
compute the trailing eigenvectors of L A C A ~  while avoiding the cost of solving any DALEs. 

Appendix. Proof of Theorem 1.1.  By definition, llPllp 5 IILilIIP llQllp, and it remains 
to show that ( \  P-lll, < I\CA\lw \I&-'  \ I w .  Since P = pT > 0, there is a nonzero x E Rn 
such that 

Let B = L,$(xxT) and note B = B~ 2 0. Then using Lemma 2.3 and t r  BQ 2 
An (Q) t r  B gives 

Theorem 1.1 holds for 1 5 p 5 oo given some restrictions on A. From [16], Xi(P) 2 
Xi(Q) + uZ(A)X,(P), and it follows that IIP-lllp 5 IIQ-'llp for 1 < p < m. From 
Theorem 3.1, llLAllP 2 1 if either A is singular or a;(A) 2 2. Therefore if either A is 
singular or u;(A) 2 2, 
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